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Abstract
Nanosystems and strongly correlated systems can possess a more complicated
internal Lie-group dynamics in comparison with the Lie-group dynamics of
Bose and Fermi systems described by the Heisenberg algebra and superalgebra,
respectively. In order to investigate properties of such quantum systems,
we represent operators of quantum systems by differential operators over
a commutative algebra of regular functionals and develop a new diagram
technique on the basis of the expansion of the generating functional for the
temperature Green functions. The differential representation makes it possible
to generalize functional equations and the diagram technique for the case of
quantum systems on topologically nontrivial manifolds by the substitution of
the generating functional on a sheaf of function rings on a nontrivial manifold
for the generating functional of a constant sheaf of functions. Nontrivial
cohomologies of the manifold, on which the quantum system is acted, lead
to the existence of additional excitations. We consider the self-consistent-
field approximation and the approximation of effective Green functions and
interactions. Poles of the matrix of effective interactions and Green functions
determine quasi-particle excitations of the quantum system. For special cases
of models the diagram expansion is simplified. In particular, if the internal
dynamics is determined by the Heisenberg algebra (superalgebra), the diagram
expansion reduces to Feynman’s diagrams for Bose (Fermi) quantum systems.
We consider the reduction of the developed diagram technique and excitations
for the case of the spin system with an uniaxial anisotropy.

PACS numbers: 03.65.Db, 05.30.−d, 11.10.Wx

1. Introduction

In order to study strongly correlated systems and nanosystems, we ought to use mathematical
models and methods, which can adequately describe processes with strong electron interactions

1751-8113/07/3911791+24$30.00 © 2007 IOP Publishing Ltd Printed in the UK 11791

http://dx.doi.org/10.1088/1751-8113/40/39/007
mailto:lutsev@domen.ru
http://stacks.iop.org/JPhysA/40/11791


11792 L V Lutsev

and processes performing on a nanosized scale. In nanosystems these processes can be
characterized by strong local interactions in the interior of nano-objects and by correlation
effects between different phases and substructures [1, 2]. One of the effective theoretical
tools for investigation of strongly interacting electronic systems is the diagram technique
based on expansions of Green functions. The diagram expansion is the powerful method
to obtain various information of interacting particle systems in the quantum field theory
and in the statistical physics. Using the diagram technique, one can find spectra of quasi-
particle excitations, calculate transition probabilities, determine temperature dependencies of
thermodynamic potentials and obtain relaxation parameters of excitations.

On the particle level, quantum systems are described by operators, which belong to Lie
algebras or to Lie superalgebras. Operators can be associated with generators of continuous
transformations related to Lie groups, which determine internal dynamics of quantum systems.
For Bose and Fermi systems, the internal dynamics is simple and is given by the Heisenberg–
Weyl group and the Heisenberg–Weyl supergroup, respectively. The corresponding Lie
algebras (the Heisenberg algebra and the Heisenberg superalgebra) are formed by creation and
annihilation operators. The diagram expansion is given by well-known Feynman’s diagrams
[3, 4].

Models of antiferromagnetism and superconductivity, the Heisenberg and Hubbard
models, are examples of models with more complicated internal dynamics [5–15]. In the
Heisenberg model, the internal dynamics of a spin system is described by the Lie group
Spin(3). The Lie algebra so(3) is associated with this group and is spanned on spin operators.
In order to develop the diagram technique, Wick’s theorem for spin operators is used [7–9].
For the case of the Hubbard model, the internal dynamics is determined by the supergroup with
the Lie superalgebra sl(2, 2) [10, 11]. The diagram expansion is constructed by the two-step
procedure based on Wick’s theorem [12–15]. The model describing antiferromagnetic and
superconducting systems presented in [6] is based on the internal group SO(5).

At present, we can observe the tendency to study models with complicated internal Lie-
group dynamics. Transformation from the particle level of strongly interacting electronic
systems to the cluster level (quantum cluster approaches [16, 17]) results in consideration
of more complicated Lie groups. Cluster approaches give us opportunity to describe the
internal local dynamics of a cluster and to find short-ranged correlations with higher precision.
Moreover, for a given strongly correlated system we can use several operator languages with
different corresponding Lie algebras [18]. The determination of an isomorphism between
different languages unveils unravel symmetries, which are hidden in one representation but
become manifest in another.

From the above-mentioned one can conclude that for studying nanosystems and strongly
correlated systems the generalization of the diagram technique is needed. The generalized
diagram expansion should satisfy the following conditions. (1) It must describe models with
arbitrary internal Lie-group dynamics. (2) The developing diagram technique must take into
account topology of quantum systems. In this study, in order to develop the generalized
diagram expansion, we represent operators of quantum systems by differential operators
over a commutative algebra of regular functionals. Taking into account this differential
representation, we construct a new diagram technique based on the expansion of the generating
functional for the temperature Green functions. The generating functional is determined by
differential functional equations. These equations are derived in section 2 from evolution
operator equations by substitution for Lie-algebra operators of differential operators over a
commutative algebra of functionals. Solutions of the differential functional equations are
found in the form of series (or in the form of the diagram expansion) in section 3. This method
of the construction of the diagram expansion is more general than the methods based on
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the Wick theorem and on the expansion of functional integrals [7–9, 12–15]. The developing
diagram construction based on differential functional equations gives us opportunity to describe
quantum systems on topologically nontrivial differential manifolds and to investigate the
differential functional equations by the secondary differential calculus and by cohomology
methods [19–22]. For this realization, we generalize the differential functional equations
and the diagram expansion in section 4 for the case of functionals determined on a sheaf of
function rings on a topologically nontrivial manifold. In this way, cohomology methods are
important in the equation investigation. First, solutions of the differential functional equations
exist if and only if Spencer’s cohomologies are trivial. This condition can impose constraint
relations on the form of interactions between particles. Singularities of many-valued solutions
are determined by the acyclicity of Spencer’s δ-complex. Second, in the general case, de
Rham’s cohomologies of a topologically nontrivial manifold are nontrivial. Nontrivial de
Rham’s cohomologies lead to the existence of additional quantum excitations.

The advantage of the developing diagram technique is the opportunity to construct
effective cluster approximations for models with strong local interactions. It can be realizable,
if we substitute composite (cluster) operators for single-particle operators in the Hamiltonian
describing a model. Composite operators belong to the universal enveloping algebra, whose
basis is determined by single-particle operators. This operator substitution leads to the
substitution of Lie algebras. The original Lie algebra L(0) describing the internal dynamics of
the quantum system is replaced by the Lie algebra L(1), which includes L(0) as the subalgebra:
L(0) ⊂ L(1).

Special cases of diagram expansions are considered in section 5. For the case of the
Heisenberg algebra (superalgebra), the diagram expansion reduces to Feynman’s diagrams for
Bose (Fermi) quantum systems. The simplification of the diagram technique occurs for models
with semi-simple Lie algebras and with simple contragredient Lie superalgebras. In section 6,
we introduce the self-consistent-field approximation and determine the matrix of effective
Green functions and interactions (the P-matrix) by summation of series of bare propagators
and interaction lines. Quasi-particle excitations of the quantum system are determined by
poles of the P-matrix. As the particular case, in section 7 we consider the diagram technique
and excitations in the spin system model with an uniaxial anisotropy.

2. Functional equations

Let us consider a model with an internal Lie-group dynamics on a crystal lattice with the
Hamiltonian

H = H0 + H′, (1)

where

H0 = Hb + HV =
∑
�1,j

bj (�1)σj (�1) +
∑
�1,�1′
i,j

Vij (�1 − �1′)σi(�1)σj (�1′), (2)

�1 ≡ �rn1 ,
�1′ ≡ �r ′

n1
is the abridge notation of crystal lattice sites, bj (�1) are the external fields and

Vij (�1−�1′) is the interaction. Operators σj (�1) can characterize different properties of quantum
systems and can be the operators of energies on quantum levels, spin operators, operators of the
number of particles, electrical dipole operators, etc. The fields bj (�1), corresponding to σj (�1),
are energies, magnetic fields, chemical potentials, electrical fields, respectively. Operators
σj (�1) satisfy the commutation relation

[σi(�1), σj (�1′)] =
∑
m

Cm
ij σm(�1)δ�1�1′ (3)
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and form the Lie algebra (superalgebra) L on the given site �1. The algebra (superalgebra)
L determines the internal Lie-group dynamics of the quantum system. If L is the Lie
superalgebra, the bracket

[σi(�1), σj (�1′)] = σi(�1)σj (�1′) − κijσj (�1′)σi(�1),

where κij = (−1)deg σi ·deg σj , depends on parity degrees deg σi(�1), deg σj (�1′) of operators
σi(�1), σj (�1′), respectively. Values of the degree, deg σk = 0 and deg σk = 1, denote
that the operator σk is the simple variable or the Grassmanian variable, respectively. We
suppose that operators σk(�1) and corresponding fields bk(�1) in relation (2) have equal parity
degrees, deg σk(�1) = deg bk(�1), and Hamiltonians Hb,HV ,H′ are of simple variables,
degHb = degHV = degH′ = 0. We also assume that the quantum system described by the
Hamiltonian H0 is in the thermodynamic equilibrium and is characterized by the temperature
T. In the thermodynamic equilibrium the set of r commuting operators

{
σ

(c)
j (�1)

}
, which is

the subset of operators {σj (�1)}, gives the set of observable variables. The set
{
σ

(c)
j (�1)

}
determines the set of statistical average values 〈〈σj (�1)〉〉0 differed from zero, where 〈〈· · ·〉〉0

denotes averaging calculated with the Hamiltonian H0. In the thermodynamic equilibrium the
external fields bj (�1), corresponding to operators

{
σ

(c)
j (�1)

}
, can be of arbitrary nonzero values.

It is a need to note that the bilinear form of the HamiltonianH0 with the bilinear interaction
in the definition (2) is general. If the interaction Hamiltonian is given by

HV =
∑
�1,�1′

i1,...,in,j1,...,jk

Vi1···inj1···jk
(�1 − �1′)ai1(

�1) · · · ain(
�1)aj1(

�1′) · · · ajk
(�1′),

then the transformation to the bilinear form is realized by the substitution of operators
σi(�1) = ai1(

�1) · · · ain(
�1), σj (�1′) = aj1(

�1′) · · · ajk
(�1′) for operators ai . The set of operators

{σi(�1)} generates the Lie algebra L(1) differed from the original Lie algebra L(0), whose basis
is formed by operators ai . The special case of this transformation to the bilinear form is the
transformation from the model of strongly interacting Fermi electronic systems to the Hubbard
model [10–15].

The Hamiltonian

H′ =
∑
�1,j

pj (�1)σj (�1) (4)

describes the interaction with the auxiliary fields pj (�1). We assume that in the Hamiltonian
H′ deg σj (�1) = deg pj (�1). In the case of models with internal dynamic Lie algebras, the
set of fields p = {pj (�1)} forms the commutative ring of functions. For models with Lie
superalgebras fields p form the anticommutative ring.

Using the Hamiltonian (1), we can determine the generating functional

Z[p] = Sp exp[−βH(p)], (5)

where β = 1/kT , k is the Boltzmann constant. In order to analyze temperature characteristics
of the quantum system, we ought to derive differential equations for the generating functional.
These equations can be found from the evolution operator equations

∂σ̂j (�1, τ )

∂τ
= [H, σ̂j (�1, τ )] (τ ∈ [0, β]) (6)

by averaging with the operator exp[−βH(p)], where σ̂j (�1, τ ) = exp(τH)σj (�1) exp(−τH)

are the operators in the Euclidean–Heisenberg representation. Without loss of generality,
we include the constant β into the definitions of the external fields bj , the interaction Vij
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and the auxiliary fields pj in relations (2) and (4), respectively, and transform the range of
values of τ in equation (6). In other words, we perform the scale transformation: −βbj →
bj ,−βVij → Vij ,−βpj → pj , τ → βτ . In new variables, the generating functional and
operators in the Euclidean–Heisenberg representation have the form Z[p] = Sp exp[H(p)]
and σ̂j (�1, τ ) = exp(−τH)σj (�1) exp(τH), respectively, where τ ∈ [0, 1].

In order to derive differential equations for the generating functional, we reveal the
dependence on p in relation (5) and find the explicit form of this dependence. For this purpose,
we perform transformation from operators in the Euclidean–Heisenberg representation to
operators in the interaction representation σj (�1, τ ) = exp(−τH0)σj (�1) exp(τH0). In the
interaction representation the HamiltonianH′ is regarded as a perturbation. The transformation
from operators in the Euclidean–Heisenberg representation to operators σj (�1, τ ) in the
interaction representation is determined by the evolution operator U(τ) [23]

σ̂j (�1, τ ) = U−1(τ )σj (�1, τ )U(τ).

The evolution operator represents the dependence on p by the form

U(τ) = exp(−τH0) exp(τH) = T exp

[∫ τ

0
H′(τ ′) dτ ′

]
,

where H′(τ ) = exp(−τH0)H′ exp(τH0) is the Hamiltonian (4) with the auxiliary fields p
in the interaction representation; T is the time-ordering operator. If time variables τ are
coincided, then

T{A,B} = 1/2[AB + (−1)deg A·deg BBA].

Differentiation of the evolution operator U(1) at τ = 1 with respect to the fields p gives

δ

δpj1(
�1, τ1)

· · · δ

δpjn
(�n, τn)

U(1) = T
{
σj1(

�1, τ1) · · · σjn
(�n, τn) exp

[∫ 1

0
H′(τ ) dτ

]}
= U(1)T

[
σ̂j1(

�1, τ1) · · · σ̂jn
(�n, τn)

]
. (7)

Since the differential operators are noncommutative, the time variables τj are added in
the fields pj . Variables τj can be regarded as Feynman’s ordering variables [24]. By virtue
of this, we write time variables in the fields pj in all following equations. Time variables can
be dropped if and only if the Lie algebra L is commutative. This case shall be considered in
section 3.2, in which Cartan’s subalgebra is represented as an independent Lie algebra.

Operator products in relation (7) belong to the universal enveloping algebra U(L) [25].
This relation makes possible to represent T-ordering products of operators σ̂j belonging to
U(L) by differential operators on a functional algebra. We define this functional algebra as the
commutative algebra A of regular functionals R ∈ A over the ring F (0) of functions pj (�1, τ ).
Regular functionals R ∈ A can be given in the form of the power series with respect to the
fields pj (�1, τ ) ∈ F (0)

R[p] =
∞∑

n=0

∑
j1,...,jn

∑
�1,...,�n

∫ 1

0
· · ·
∫ 1

0
Yj1,...,jn

(�1, . . . , �m; τ1, . . . , τm)

×pj1(
�1, τ1) · · · pjn

(�n, τn) dτ1 · · · dτn, (8)

where m � n, Yj1,...,jn
(�1, . . . , �m; τ1, . . . , τm) are functions of m space and m time variables.

These functions belong to the smooth envelope of the tensor product of m rings
⊗

m F (0)
m .

We require that integrals are of finite values and the series is convergent. We can define
the summation A ⊕ A → A, multiplication A ⊗ A → A,A ⊗ F (0) → A and differential
operations on the F (0)-algebra A. The summation and multiplication operations in the algebra
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A are defined as term-by-term summation and multiplication of the power series, respectively.
According to [19–21], differentiation is the special case of the F (0)-homomorphism. The
differentiation of the regular functional R[p] with respect to the field pi(�i, τi) is reduced to
the elimination of the field pi(�i, τi) and to the dropping out the sum and the integral over
variables �i, τi in the power series (8)

δR[p]

δpi(�i, τi)
=

∞∑
n=0

∑
j1,...,î,...,jn

∑
�1,...,�̂i,...,�n

∫ 1

0
· · ·
∫ 1

0
Yj1,...,jn

(�1, . . . , �m; τ1, . . . , τm)

×pj1(
�1, τ1) · · · p̂i(�i, τi) · · · pjn

(�n, τn)︸ ︷︷ ︸
n−1

dτ1 · · · dτ̂i · · · dτn, (9)

where the mark ˆ points out that the given variable must be dropped. The summation over
indices j1, . . . , î, . . . , jn in relation (9) is performed over all sets {î, j2, . . . , jn}, . . . , {j1, . . . ,

jn−1, î}.
After averaging with the operator exp(H), relation (7) can be used for representation of

equation (6) in the form of differential functional equations. Taking into account the explicit
form of the Hamiltonian H, defined by relations (1), (2) and (4), the commutation relations
(3) and relation (7), we substitute of differential operators for operators σ̂j in the Euclidean–
Heisenberg representation in equation (6) and obtain differential functional equations

∂

∂τ

δZ[p]

δpj (�1, τ )
=
∑
i,m

[bi(�1) + pi(�1, τ )]Cm
ij

δZ[p]

δpm(�1, τ )

+
∑

i,n,m,�1′

Cm
nj [Vin(�1′ − �1) + κinVni(�1 − �1′)]

δ2Z[p]

δpi(�1′, τ )δpm(�1, τ )
. (10)

In the general case, solutions of the functional equation (10) belong to a module over the
algebra A. Besides the derivation of the functional equation (10), relation (7) can be used
for the derivation of the following proposition—the functional Z[p] generates temperature
Green’s functions without vacuum loops [23]

Gj1...jn
(�1, . . . , �n, τ1, . . . , τn) ≡ 〈〈Tσ̂j1(

�1, τ1) · · · σ̂jn
(�n, τn)

〉〉
= Z−1 δnZ[p]

δpj1(
�1, τ1) · · · δpjn

(�n, τn)

∣∣∣∣∣
p→0

, (11)

where 〈〈· · ·〉〉 denotes averaging or the trace operation Sp calculated with the operator
exp(H)/Sp exp(H).

3. Diagram expansion

We will find the solution of equation (10) in the form of the power series expansion for
the functional Z[p] with respect to the interaction Vij and fields p. Each term of the series
corresponds to a diagram, therefore, this power series expansion is known as the diagram
expansion. In order to find the diagram expansion, we substitute the functional W [p] for the
functional Z[p]. W [p] is the generating functional for the connected Green functions without
the interaction Vij and is defined as [23]

Z[p] = exp


∑

�1,�1′
i,j

∫ 1

0

δ

δpi(�1, τ )
Vij (�1 − �1′)

δ

δpj (�1′, τ )


 exp W [p] dτ. (12)
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Substituting W [p] for Z[p] in equation (10), we get equations for the functional W [p]
without Vij terms. These equations are given on a single crystal lattice site[

∂

∂τ
−
∑

i

C
j

ijui(�1, τ )

]
δW [p]

δpj (�1, τ )
=
∑

i,m( �=j)

Cm
ij ui(�1, τ )

δW [p]

δpm(�1, τ )
, (13)

where ui(�1, τ ) = bi(�1) + pi(�1, τ ).
The diagram expansion for W [p] has the form of the power series with respect to the

fields p

W [p] =
∞∑

n=0

∑
�1

j1 ,...,jn

∫ 1

0
· · ·
∫ 1

0
�j1,...,jn

(�1, τ1 . . . τn)pj1(
�1, τ1) · · · pjn

(�1, τn) dτ1 · · · dτn. (14)

Coefficients �j1,...,jn
(�1, τ1 . . . τn) are given by derivatives of W [p] with respect to the fields p

in the limit p = 0

�j1,...,jn
(�1, τ1 . . . τn) = δnW [p]

δpj1(
�1, τ1) · · · δpjn

(�1, τn)

∣∣∣∣∣
p→0

.

In general, coefficients �j1,...,jn
(�1, τ1 . . . τn) are distributions. If �j1,...,jn

(�1, τ1 . . . τn) are
smooth functions complying with requirements of series convergence and integral finiteness
in relation (14), then the functional W [p] belongs to the algebra A. Otherwise, W [p] belongs
to an A-module. In order to find these coefficients, we single out Cartan’s subalgebra H
in the Lie algebra L. In the general case, Cartan’s subalgebra is nilpotent, but we assume
that H is commutative with dimension of dim H = r and with the basis

{
σ

(H)
j (�1)

}
[26–28].

For quantum systems at the thermodynamic equilibrium with the Hamiltonian, described by
relation (2), the subalgebra H corresponds to the set of operators of observable variables.
External fields bj (�1) ≡ b

(H)
j (�1) and derivatives δW [p]/δpj (�1, τ ) corresponding to these

observable variables, in general, differ from zero values. Therefore, we shall say that the
auxiliary field pj (�1, τ ) corresponding to the operator σ

(H)
j ∈ H are Cartan’s field p

(H)
j (�1, τ ).

Auxiliary fields differed from p
(H)
j (�1, τ ) are denoted by p̄j (�1, τ ). Thus, the ring F (0)(p) can

be decomposed with the direct sum F (0)(p) = F (0)(p(H)) ⊕ F (0)(p̄).
After determination of Cartan’s subalgebra, we perform the root decomposition of the

Lie algebra L relative to Cartan’s subalgebra H: L = ⊕αLα,H = L0 [26–28]. Roots α are
1-forms belonging to the dual space H ∗ and form the root system 	 = {α ∈ H ∗|Lα �= 0}. If
L is a superalgebra, then L = L0̄ ⊕L1̄, where degL0̄ = 0 and degL1̄ = 1 and the root system
has the form 	0 ∪ 	1 [28]. 	0 is the root system of the algebra L0̄ and 	1 is the system
of weights of the representation of the algebra L0̄ on the L0̄-module L1̄. Accordingly, 	0 is
called the system of even and 	1 that of odd roots. Since the subalgebra H is commutative,
then the adjoint representation ad

(
σ

(H)
i

)
σ

(α)
k ≡ [

σ
(H)
i , σ

(α)
k

]
on spaces Lα

(
σ

(α)
k ∈ Lα

)
has

the triangular form, and we can choose the basis of σ
(α)
j , which is satisfied by the following

conditions:

ad
(
σ

(H)
i

)
σ

(α)
1 = C1

i1σ
(α)
1

ad
(
σ

(H)
i

)
σ

(α)
2 = C1

i2σ
(α)
1 + C2

i2σ
(α)
2

. . .

ad
(
σ

(H)
i

)
σ (α)

n =
n∑

j=1

C
j

inσ
(α)
j ,

(15)
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where diagonal coefficients C
j

ij do not depend on the index j , i.e. C1
i1 = · · · = Cn

in for the given
root subspace Lα . After the root decomposition performing, roots α and diagonal coefficients
C

jα

ijα
, defined by commutation relations (3), are connected by the relation α

(
σ

(H)
i

) = C
jα

ijα
,

where the index jα corresponds to the root α [26, 27]. We consider the case of the algebra L,
for which for every root αk the opposite root −αk exists.

We find coefficients �j1,...,jn
in relation (14) by means of a two-step procedure. At the

first step, we use a recursion relation and reduce derivatives with respect to non-Cartan’s
fields—we express derivatives of W with respect to the fields p̄i(�1, τ ) by derivatives of W

with respect to the Cartan fields p
(H)
j (�1, τ ). Then, we perform passage to the limit p̄ → 0. At

the second step, we calculate derivatives of W with respect to the Cartan fields p
(H)
j (�1, τ ) at

the limit p
(H)
j → 0.

3.1. The first step: expression of functional derivatives via derivatives with respect to
Cartan’s fields

Derivatives of W with respect to the fields p̄i(�1, τ ) corresponding to operators σj /∈ H can be
found by a recursion procedure following from equation (13). Let σj be the basis vector in
relation (15) with the root αj �= 0. Then, taking into account that α

(
σ

(H)
i

) = C
jα

ijα
and solving

equation (13) as the differential equation with respect to τ , we obtain

δW [p]

δp̄j (�1, τ )
= Cj exp

[∫ τ

0
gj (�1, τ ′) dτ ′

]
+
∫ τ

0
dj (�1, τ, τ ′)

∑
i,m( �=j)

Cm
ij ui(�1, τ ′)

δW [p]

δpm(�1, τ ′)
dτ ′,

(16)

where

dj (�1, τ, τ ′) = exp

[∫ τ

τ ′
gj (�1, τ̄ ) dτ̄

]
θ(τ − τ ′)

is the kernel of the integral operator inverse to the operator ∂/∂τ − gj (�1, τ ):[
∂

∂τ
− gj (�1, τ )

]
dj (�1, τ, τ ′) = δ(τ − τ ′), (17)

gj (�1, τ ) = ∑r
i=1 αj

(
σ

(H)
i

)
ui(�1, τ ), σ

(H)
i is the basis vector of Cartan’s subalgebra, Cj is an

arbitrary functional independent of the variable τ and

θ(τ ) =
{

1, τ � 0
0, τ < 0.

Let us make the extension of dj (�1, τ, τ ′) on τ ′ > τ in the range τ, τ ′ ∈ [−1, 1] and
the periodic extension on other values of τ, τ ′ in relation (16). In order to eliminate the
arbitrariness of the functional Cj , we perform this extension so as at p̄ → 0 the second
derivatives of W with respect to the fields p̄i , p̄j with αi = −αj have the form

δ2W [p]

δp̄i(�1, τ ′)δp̄j (�1, τ )
= A1 exp

[∫ τ

τ ′
gj (�1, τ̄ ) dτ̄

]∑
m

Cm
ij

δW [p]

δpm(�1, τ ′)
(τ > τ ′)

δ2W [p]

δp̄i(�1, τ ′)δp̄j (�1, τ )
= κij

δ2W [p]

δp̄j (�1, τ )δp̄i(�1, τ ′)

= −A2 exp

[∫ τ

τ ′
gj (�1, τ̄ ) dτ̄

]∑
m

Cm
ij

δW [p]

δpm(�1, τ )
(τ < τ ′). (18)
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We take into account that, in this case, gi = −gj , C
m
ij = −κijC

m
ji, δW [p]/δpm(�1, τ ) �= 0

is the derivative with respect to Cartan’s field and this derivative is independent of the variable
τ due to the commutativity of Cartan’s subalgebra. Then, the coefficients A1, A2 in relation
(18) are uniquely determined by the requirement that, in accordance with relation (17), steps of
the function dj (�1, τ, τ ′) at τ = τ ′ and at τ = τ ′ − 1 are equal to 1 and κij = κjj , respectively,

A1 − A2 = 1, A1 exp[fj (�1)] − A2 exp[−fj (�1)] = −κjj ,

where fj (�1) = ∑r
l=1 αj (σ

(H)
l )bl(�1). We obtain A1 = −κjjnj (fj (�1)), A2 = κjjnj (−fj (�1))

and define the propagater

D̄j (�1, τ, τ ′) = [A1dj (�1, τ, τ ′) − A2dj (�1, τ ′, τ )]

= [−nj (fj (�1))θ(τ − τ ′) + nj (−fj (�1))θ(τ ′ − τ)]κjj exp

[∫ τ

τ ′
gj (�1, τ̄ ) dτ̄

]
,

(19)

where nj (x) = (exp x − κjj )
−1. Then, relation (16) is written in the form

δW [p]

δp̄j (�1, τ )
=
∫ 1

0

∑
i,m( �=j)

Cm
ij D̄j (�1, τ, τ ′)ui(�1, τ ′)

δW [p]

δpm(�1, τ ′)
dτ ′. (20)

Derivatives δnW [p]/δp̄j1 · · · δp̄jn
can be found by the recursion procedure based on

relation (20). In order to clarify how derivatives of W with respect to the fields p̄i(�1, τ ) are
substituted by derivatives of W with respect to Cartan’s fields, we differentiate relation (20)
with respect to an arbitrary non-Cartan’s field p̄k

δ2W [p]

δp̄k(�1, τ ′)δp̄j (�1, τ )
=
∫ 1

0

∑
i,m( �=j)

Cm
ij

δD̄j (�1, τ, τ ′′)

δp̄k(�1, τ ′)
ui(�1, τ ′′)

δW [p]

δpm(�1, τ ′′)
dτ ′′

+
∑

m(�=j)

Cm
kj D̄j (�1, τ, τ ′)

δW [p]

δpm(�1, τ ′)

+
∫ 1

0

∑
i,m( �=j)

κikC
m
ij D̄j (�1, τ, τ ′′)ui(�1, τ ′′)

δ2W [p]

δp̄k(�1, τ ′)δpm(�1, τ ′′)
dτ ′′. (21)

In relation (21) at p̄ → 0, the third summand possesses terms with ui = bi(�1)

corresponded to Cartan’s fields. Hence, in the coefficient Cm
ij indices j and m belong to

the common root space Lα . By virtue of the triangular form of the adjoint representation
(15), in the third summand the derivative δ2W [p]/δp̄kδpm possesses the index m < j . If
it is necessary, using relation (21), we can repeat the reduction process for the derivative
δ2W [p]/δp̄kδpm and express the second derivative δ2W [p]/δp̄kδp̄j by first derivatives of
W [p]. Taking into account that for non-Cartan’s fields δW [p]/δp̄m|p̄→0 = 0, the derivative
δ2W [p]/δp̄kδp̄j |p̄→0 is expressed by first derivatives of W [p] with respect to Cartan’s fields.
For the case of derivatives of higher orders, the analogous recursion procedure of the reduction
of derivatives δnW [p]/δp̄j1 · · · δp̄jn

to derivatives with respect to Cartan’s fields can be used.
Thus, after realization of the recursion procedure in order to calculate coefficients �j1,...,jn

, we
must find derivatives of W [p] with respect to Cartan’s fields p

(H)
j (�1, τ ).

3.2. The second step: calculation of functional derivatives with respect to Cartan’s fields

In the absence of an interaction (Vij = 0) at the limit p̄ → 0 and at the thermodynamic
equilibrium, the external fields b̄j (�1) are zero and the Hamiltonian H given by relation (1)
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describes systems with commutative operators. For such quantum systems, the functional
W [p] can be found by a direct calculation. Taking into account definitions (5) and (12)
of Z[p] and W [p], respectively, and the fact that for the commutative Cartan subalgebra
H, the fields p

(H)
j are independent of τ , consequently, the variable τ can be dropped and

u
(H)
j (�1, τ ) = b

(H)
j (�1) + p

(H)
j (�1) = u

(H)
j (�1), we obtain

W [p(H)] = ln Sp exp


∑�1,j

u
(H)
j (�1, τ )σ

(H)
j (�1)




=
∑

�1
ln

m∑
i=1

∏
j

exp
[
u

(H)
j (�1)ρ

(i)
j

] ≡
∑

�1
Fρ[u(H)], (22)

where ρ is the representation of the subalgebra H, in whose operators σ
(H)
j (�1) have the

diagonal form diag
[
ρ

(1)
j , . . . , ρ

(m)
j

]
; i = 1, 2, . . . , m is the index of spectral states; Fρ is

the free energy. Then, in the expansion (14) coefficients �j1,...,jn
with indices j1, . . . , jn

corresponding to Cartan’s fields, denoted as �
(H)
j1,...,jn

, can be written in the form

�
(H)
j1,...,jn

(�1) = δnFρ[u(H)]

δp
(H)
j1

(�1) · · · δp(H)
jn

(�n)

∣∣∣∣∣
p(H)→0

= ∂nFρ[b(H)]

∂b
(H)
j1

(�1) · · · ∂b
(H)
jn

(�n)
. (23)

For instance, consider the special case of L = so(3). The Cartan subalgebra is formed
by the operator Sz,H = Span{Sz}, and the representation ρ is realized by diagonal (2l + 1) ×
(2l + 1) matrices. The linear coefficient �

(H)
j (�1) (j = z) of the expansion given by relation

(23) are expressed in terms of the Brillouin function [7–9]

�
(H)
j (�1) = lBl

(
lb

(H)
j (�1)

)
.

Then, coefficients �j1,...,jn
of higher orders are expressed in terms of derivatives of the Brillouin

function with respect to the external field b
(H)
j (�1) = bz(�1).

3.3. Diagram expansion in imaginary time-dependent variables

3.3.1. Propagators. In order to calculate coefficients �j1,...,jn
(�1, τ1 . . . τn) in the expansion

(14), we must use relation (20) several times (if it is necessary) and, then, pass to the limit
{pj } → 0. We assign the line with the arrow directed from the vertex with the time τ to the
vertex with the time τ ′ (figure 1(a)) to the limit value of the propagator given by relation (19):

Dj(�1, τ − τ ′) = D̄j (�1, τ, τ ′)|p→0. (24)

According to relation (19), the root αj can be associated with the propagator Dj . It is a need
to note that the extension of dj on τ ′ > τ in relation (16) allows us to reduce the number of
propagators, which must be accounted in the diagram expansion. If αk = −αj , then instead
of the propagator Dk we can use the propagator Dj with αj > 0 and with opposite arrow
direction (τ − τ ′ < 0) in the expansion. This corresponds to the system of operator majorities
[12–14].

3.3.2. Vertices. Propagators and interaction lines are tied by vertices in diagrams. There are
six vertex types. The first five types correspond to factors arising from differentiation of the
functional W [p] with respect to the field pi(�1, τ ) (figure 1(b)). The field pi(�1, τ ) is displayed
as a segment of a wavy line with the index i. In accordance with relation (20), these factors
depend on indices of the differentiating field, incoming and outgoing propagators and have
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I ij 1-1
(0)

1i 1’ ’j

D( , ’j 1
’

j

e

ii

v (-;-|i)e
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v (-;j|j)a b

ij

c

j kv (j;m|i)c

i

j m v(m,...;l|k)

n

d

j k
d

j

n

m v(m,...;l|k)

i

j k

f

v (j;m|-)f

j m v(m,...;l|k)

(a)

(b)

(c)

(d )

Figure 1. (a) Propagators Dj (�1, τ − τ ′), (b) vertices, (c) example of a block and (d) interaction

line I
(0)
ij (�1 − �1′, τ − τ ′).

the general form v({j};m|i), where {j} is the set of indices of propagators incoming into the
vertex, m is the index of propagator outgoing from the vertex or the index of Cartan’s field
pm in the coefficient �

(H)
j1,...,jn

defined by relation (23), i is the index of the field pi(�1, τ ). If an
index is absent in the vertex, then we shall write the dash at this place.

We obtain the following types of vertices. From relation (20), one can see that the start
and end points of propagators correspond to vertices. We shall call that the vertex is of the
type a, if the vertex has one outgoing propagator and has not any incoming ones. The vertex
factor is va(−; j |j) = 1. The vertex of the type b with the factor vb(j ;m|i) = Cm

ij has one
incoming propagator with the index j and no outgoing ones. The index m corresponds to
an index of the coefficient �

(H)
j1,...,jn

. The c-vertex is obtained as a result of differentiation of
D̄j -propagator with respect to Cartan’s field and as a result of differentiation of the variable
ui with respect to non-Cartan’s field in relation (20). One propagator comes in (the index j )
and one propagator goes out (the index m) from the c-vertex. The corresponding factor is
vc(j ;m|i) = Cm

ij . The vertex of the d-type is characterized by two incoming propagators and
one outgoing propagator. The d-vertex is gotten as a result of the twofold action of the recursion
procedure based on relation (20). After permutation of derivatives of W [p] with respect to
fields p̄k(�1, τ ′), pm(�1, τ ′′) in the third summation in relation (21), end points of two incoming
propagators and the start point of the outgoing propagator have equal time variables and must
be tied. The factor corresponding to the d-vertex is equal to vd(j, n;m|i) = κjn

∑
s Cs

ijC
m
sn,
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where j, n are indices of incoming propagators, m is the index of the outgoing propagator
and i is the index of the field pi . e-Vertices are associated with differentiation with respect to
Cartan’s fields p

(H)
i on the second step of the calculation of functional derivatives (section 3.2).

The vertex factor is ve(−;−|i) = 1. Finally, we introduce the vertex of the type f , which
does not correspond to a differentiation and is caused by Cartan’s variable ui in relation (20).
One propagator comes in and one propagator goes out from the f -vertex. Propagators have
identical roots, αm = αj . The vertex factor is equal to vf (j ;m|−) = ∑

i C
m
ij bi(�1). In

accordance with the triangular form of the adjoint representation (15) and the condition m �= j

given by relation (20), the index m (the index of the outgoing propagator) in the f -vertex is
less than j (the index of the incoming propagator), m < j . In cases of c-, d-, f -vertices, the
summation over the index of the outgoing propagator and indices of neighboring vertices must
be done. In other words, the summation over m must be performed, where m is the common
index of the propagator outgoing from the vertex v(. . . ;m| . . .), the root αm of the propagator
and the propagator incoming into the neighboring vertex v(m, . . . ; l|k) (figure 1(b)). In the
case of the b-vertex with the factor vb(j ;m|i), the summation must be performed over the
common index m of the vertex and one of the indices of the coefficient �

(H)
j1,...,jn

given by
relation (23).

After definition of vertices, we can formulate the law of conservation of roots. The root
α

(field)
i can be assigned to the differentiation of W [p] with respect to the field pi(�1, τ ). Roots

α
(in)
j of propagators incoming into the vertex and roots α(out)

m of outgoing propagators are
given with ‘+’ and ‘−’ signs, respectively. Then, taking into account the property of the root
decomposition of Lie algebras [26–28]

[σ (α), σ (β)] ∈ Lα+β,

from relation (20) we obtain the law of conservation of roots in a vertex

α
(field)
i +

∑
j

α
(in)
j − α

(out)
l = 0. (25)

In the case of e-vertices, relation (25) is trivial. For f -vertices, the root α(field)
i must be dropped

out.

3.3.3. Blocks. As a result of the first step based on relation (20)—expression of functional
derivatives of W [p] in relation (14) via derivatives with respect to Cartan’s fields—we obtain
a diagram consisting of n isolated parts. These parts are e-vertices, single propagators and
a set of propagators tied by c-, d-, f -vertices. The number of isolated parts n is equal to
the number of differentiations of W [p] with respect to Cartan’s fields or, equivalently, to the
number of indices of the coefficient �

(H)
j1,...,jn

(�1) in relation (23). We confine these parts in a

block (figure 1(c)). According to relation (23), we assign the factor �
(H)
j1,...,jn

(�1) to the block
of n parts. In blocks all parts have equal space variables. Each part with propagators tied
by vertices ends off a b-vertex. Indices jk of the factor �

(H)
j1,...,jn

(�1) correspond to indices i of
e-vertices, ve(−;−|i), and to indices m of b-vertices, vb(j ;m|i). In the case of b-vertices, it
is the need to perform the summation over indices m.

3.3.4. Interaction lines. Returning to the functional Z[p] given by relation (12), we can see
that the operation δ/δpi(�1, τ )Vij (�1−�1′)δ/δpj (�1′, τ ) adds interaction lines I

(0)
ij (�1−�1′, τ−τ ′) =

Vij (�1 − �1′)δ(τ − τ ′) connected couples of vertices (figure 1(d)). Roots α
(field)
i and α

(field)
j

associated with fields pi and pj , respectively, can be assigned to end points of the interaction
line I

(0)
ij . So, the law of conservation of roots in a vertex (25) holds.
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The diagram expansion for Z[p] has the form of the power series

Z[p] =
∞∑

n=0

∑
�1,...,�n

j1,...,jn

∫ 1

0
· · ·
∫ 1

0
Qj1,...,jn

(�1, . . . , �n, τ1, . . . , τn)

×pj1(
�1, τ1) · · · pjn

(�n, τn) dτ1 · · · dτn, (26)

where coefficients Qj1,...,jn
are proportional to temperature Green’s function without vacuum

loops (11). Taking into account relation (12) and calculating coefficients �j1,...,jn
in relation

(14) by means of the two-step procedure, we determine coefficients Qj1,...,jn
in the diagram

expansion. Each diagram corresponds to the analytical expression

Qj1,...,jn
(�1, . . . , �n, τ1, . . . , τn) = Ps

s!

∏
L

∑
�1,...,�s
�1′...�s ′

{i,j,m}

∫ 1

0
· · ·
∫ 1

0
I

(0)

j1j1
′(�1 − �1′, τ1 − τ1

′)

× · · · I (0)

js js
′(�s − �s ′, τs − τs

′)
∏

l

Djl
(�1L, τl − τl

′)

×
∏

µ∈ vertex

vµ({jr};mr |ir )�(H)
JL

(�iL) dτ1 · · · dτM, (27)

where n is the number of external vertices related to fields pj in the expansion (26). Interaction
lines do not connect with external vertices. Ps is the number of topological equivalent diagrams.
2s is the number of inner vertices connected by interaction lines I

(0)

jkjk
′ . Integration is performed

over M = 2s + mf time variables τ , where mf is the number of f -vertices. JL = (j1, . . . , jkL
)

is the multi-index of the block L containing kL parts. The block factor �
(H)
JL

is determined by
indices of b- and e-vertices. Products

∏
L and

∏
µ∈ vertex vµ({jr};mr |ir ) are performed over

all diagram blocks and all vertices, respectively. Indices of interaction lines and propagators
are chosen in the set {i, j,m} = {i1, . . . , j1, . . . , m1, . . .} so that they coincide with the proper
vertex indices and the law of conservation of roots in a vertex (25) holds. Time variables
corresponded to the start and end points of propagators and interaction lines, which are tied in
a vertex, must coincide. Moreover, space variables of interaction lines and propagators must
coincide within blocks.

3.4. Diagram expansion in frequency-dependent variables

The frequency representation of the diagram expansion is more convenient for calculations.
In order to perform this transformation, we determine the Fourier transforms of propagators
(24) and interaction lines

Dj(�1, ωn) = 1

2

∫ 1

−1
Dj(�1, τ ) exp(−iωnτ) dτ = [1 − (−1)n+1κjj ]

2[iωn − fj (�1)]
, (28)

I
(0)
jk (�1 − �1′, ωn) = Vjk(�1 − �1′), (29)

where ωn = πn (n = 0,±1, . . .) are the Matsubara frequencies, fj (�1) =∑r
l=1 αj

(
σ

(H)
l

)
bl(�1).

The analytical expression of coefficients Qj1,...,jn
(27) in the frequency representation is

written as
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Qj1,...,jn

(�1, . . . , �n, ωn1 , . . . , ωnn

) = Ps

s!

∏
L

∑
mi

∑
�1,...,�s
�1′...�s ′

{i,j,m}

I
(0)

j1j1
′
(�1 − �1′, ωm1

) · · · I (0)

jsjs
′
(�s − �s ′, ωmn

)

×
∏

l

Djl

(�1L, ωml

) ∏
µ∈ vertex

vµ({jr};mr |ir )
∏

vertex

δ

(∑
l

ωml

)
�

(H)
JL

(�iL), (30)

where
∑

mi
denotes the summation performed over all inner frequency variables. The term∏

vertex δ
(∑

l ωml

)
gives the frequency conservation in each vertex, i.e. the sum of frequencies

of propagators and interaction lines, which come in and go out from a vertex, is equal to 0.
The e-vertex can be connected with the single interaction line. In the analytical expression,
this corresponds to the factor δ(ωm) = δm0.

Spectrum relations for excitations, relaxation times and other characteristics of the
quantum system are given by poles of the two-site temperature Green functions (11) in
the frequency representation under the analytical continuation

iωm → ω + iε sign ω
(31)

δm0 → (ω + iε sign ω)−1 (ε → 0).

4. Diagram expansion for quantum systems on topologically nontrivial manifolds

Differential functional equations (10) have been derived for models with the Hamiltonian
(1) on a topologically trivial crystal lattice. The functional Z[p] is defined as functional
on fields pj (�1, τ ). These fields form the commutative ring of functions F (0) for models
with internal dynamic Lie algebras and the anticommutative ring for models with Lie
superalgebras. The ring F (0) produces a constant sheaf of functions. In order to generalize the
diagram technique for models on topologically nontrivial manifolds, we ought to substitute in
equation (10) the sheaf of function rings F on the nontrivial manifold M for sheaf of functions
F (0) ⊂ F and to perform substitution of continuous space variables for crystal lattice sites,
pj (�1, τ ) → pj (�r, τ ). Then, the summation over crystal lattice sites is substituted by the
integration over continuous space variables and regular functionals R[p] (8) of the algebra A
can be written in the form

R[p] =
∞∑

n=0

∑
j1,...,jn

∫
V

· · ·
∫

V

∫ 1

0
· · ·
∫ 1

0
Yj1,...,jn

(�r1, . . . , �rm; τ1, . . . , τm)

×pj1(�r1, τ1) · · · pjn
(�rn, τn) d�r1 · · · d�rn dτ1 · · · dτn,

where pj (�r, τ ) ∈ F . The analogous transformation must be performed for the functionals
W [p] and Z[p] given by relations (14) and (26), respectively.

In order to describe models on topologically nontrivial manifolds by equation (10), we
require that, by analogy with fields pj (�r, τ ), external fields bi and interactions Vik belong to
the sheaf of function rings F , too. The generalized equation (10) cannot have any solutions or
can possess one or many solutions. Solutions of the functional equation (10) exist if and only
if Spencer’s cohomologies are trivial [19–21]. This condition can impose constraint relations
on fields bi and on interactions Vik of quantum systems on nontrivial manifolds. Singularities
of many-valued solutions are determined by the acyclicity of Spencer’s δ-complex.

Transformation to topologically nontrivial manifolds results in the existence of additional
degrees of freedom and additional quantum excitations. The short exact sequence of sheaves
of function rings on the manifold M

0 → F (0) i→ F j→ F/F (0) → 0,
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where i is the injection, j is the epimorphism onto the factor sheaf F/F (0), induces the exact
sequence of cohomology groups [29, 30]

0 → H 0(M,F (0))
i∗→ H 0(M,F)

j∗→ H 0(M,F/F (0))
δ∗→

(32)
δ∗→ H 1(M,F (0))

i∗→ H 1(M,F)
j∗→ H 1(M,F/F (0))

δ∗→ · · · .
Taking into account the isomorphism of cohomologies on differentiable manifolds,

cohomologies H ∗(M,F (0)), H ∗(M,F),H ∗(M,F/F (0)) can be identified with de Rham
cohomologies with coefficients in a sheaf [30]. Additional degrees of freedom are determined
by cohomologies H ∗(M,F/F (0)) in the sequence (32). If cohomologies H ∗(M,F/F (0)) on
the manifold M are nontrivial, fields pj (�r, τ ) in equation (10) are changed by fields pj,J (�r, τ ),
where J is the multi-index given by cohomology classes corresponding to group elements of
H ∗(M,F/F (0)). This leads to the existence of additional excitations.

If the quantum system is determined on a Riemann surface, then we can take the sheaf of
meromorphic functions M∗ distinct from zero on the manifold M and the subsheaf of nonzero
holomorphic functions O∗ as sheaves F and F (0), respectively. Then, additional degrees of
freedom are given by the divisor group Div(M) = H 0(M,M∗/O∗) [29, 31] and correspond
to vortex excitations.

5. Simplification of diagram expansions for special cases

5.1. Heisenberg algebra (superalgebra)

Heisenberg algebra (superalgebra) possesses the set of generators {I, a(�1), a+(�1), ε(�1) =
a+(�1)a(�1)} with nonzero commutation relations

[a(�1), a+(�1)] = I

[ε(�1), a(�1)] = −a(�1) (33)

[ε(�1), a+(�1)] = a+(�1).

Other commutation relations are trivial. a+, a and I are creation, annihilation and identical
operators, respectively. Cartan’s subalgebra H is spanned on vectors I, ε(�1): H =
Span{I, ε(�1)}. The Hamiltonian (1) describes interacting Bose and Fermi systems and has the
form

H =
∑

�1
[(pI + N(�1))I + (pε + E(�1))ε(�1) + p−a(�1) + p+a

+(�1)]

+
∑
�1,�1′

(�1 �=�1′)

V (�1 − �1′)ε(�1)ε(�1′), (34)

where N(�1) and E(�1) are the external fields corresponding to operators I and ε(�1), respectively.
Equation (13) for the functional W [p] are determined by commutation relations (33) and the
Hamiltonian (34) and are written in the form[

∂

∂τ
± (pε(�1, τ ) + E(�1))

]
δW [p]

δp∓(�1, τ )
= ∓p±(�1, τ )

δW [p]

δpI (�1, τ )
,

∂

∂τ

δW [p]

δpε(�1, τ )
= p−(�1, τ )

δW [p]

δp−(�1, τ )
− p+(�1, τ )

δW [p]

δp+(�1, τ )
, (35)

∂

∂τ

δW [p]

δpI (�1, τ )
= 0.
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Figure 2. (a) Propagators tied by c-vertices with external a- and b-vertices. (b) Blocks with
isolated e-vertices and transformation from blocks to propagator loops.

Root spaces La,La+ are one-dimensional, therefore, f -vertices are absent in the diagram
expansion. In the analyzing model only one propagator (24) exists:

δ2W [p]/δp−(�1, τ )δp+(�1, τ )|p→0 = D(�1, τ − τ ′). In the frequency representation (28),
the propagator is given by

D(�1, ωn) = 1 − (−1)n+1κaa

2[iωn − E(�1)]
, (36)

where κaa = 1 for Bose systems and κaa = −1 for Fermi ones. Taking into account that the
root of the propagator is αa+ with αa+(I ) = 0 and the form of the interaction is given by the
Hamiltonian (34), from the law of conservation of roots in a vertex we deduce that d-vertices
are absent in the diagram expansion.

Let us consider a block containing propagators (36). From the first equation (35), it follows
that the block with one isolated part corresponds to the differentiation δW [p]/δpI (�1, τ ). From
the third equation (35), we can conclude that derivatives of W [p] with respect to pI (�1, τ ) of
higher orders are equal to zero. Consequently, if the block contains propagators, then this
block has only one connected part. In this case, the block designation can be dropped out in
diagrams. Thus, for the model with the Hamiltonian (34) diagrams contain the following.

(a) Propagators without block designations. Propagators are tied by c-vertices with
vc(a

+; a+|ε) = 1. The a- and b-vertices are external with va(−; a+|a+) = vb(a
+; I |a) = 1

(figure 2(a)).
(b) Blocks with n isolated e-vertices corresponding to derivatives δnW/δpε · · · δpε|p→0

(figure 2(b)).

Blocks with isolated e-vertices can be transformed by substitution of propagator loops for
blocks. The transformation is based on the relation ε(�1) = a+(�1)a(�1). Due to this relation,
in derivatives δnW/δpε · · · δpε|p→0 the differentiation δ/δpε(�1, τ ) can be substituted by the
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differentiation δ2/δpa+(�1, τ )δpa(�1, τ ). This corresponds to propagator loops with c-vertices
in diagrams. If a diagram contains m propagator loops, then its analytical expression must be
multiplied by the coefficient κm

aa . After this transformation, the diagram expansion takes on
the form of well-known Feynman’s diagrams.

5.2. Semi-simple Lie algebras and simple contragredient Lie superalgebras

Similarly to the above-mentioned case of the Heisenberg algebra, for semi-simple algebras
diagram expansions can be simplified. Root spaces Lα are one-dimensional. This leads to
the absence of f -vertices. Due to the non-degeneration of the Killing form on L, each root α

corresponds to the root vector hα ∈ H according to the relation [26, 27]

α(σ (H)) = (hα, σ (H)), (37)

where (. . . , . . .) is the Killing form. Vectors hα are expressed in terms of normalized operators
σ (α), σ (−α). The operator normalization is chosen so that (σ (α), σ (−α)) = 1. Then, vectors hα

can be written as [26, 27]

hα = [σ (α), σ (−α)].

Cartan’s subalgebra H is completely determined by the vectors hα . The Killing form is positive
definite on Cartan’s subalgebra and induces the Euclidean geometry on H. Taking into account
the one-to-one correspondence between roots α and root vectors hα , we can write the law of
conservation of roots (25) in the form

h(field)
αi

+
∑

j

h(in)
αj

− h(out)
αl

= 0.

For the case of Lie algebras of high dimensions, this representation of the law of conservation
of roots can be more efficient in comparison with relation (25), because we can use Euclidean
properties of the subalgebra H.

The special cases of simple contragredient Lie superalgebras are A(m, n), B(m, n),

C(n),D(m, n),D(2, 1;α), F (4),G(3) [28]. For these superalgebras root spaces Lα are
one-dimensional. The superalgebras possess supersymmetric bilinear non-degenerate forms,
which are invariant under automorphisms of superalgebras and can be different from the
Killing form. The existence of these forms allows us to make transformation to root vectors
hα in accordance with relation (37). The above-mentioned properties lead to simplifications of
diagram expansions, analogous to simplifications for semi-simple Lie algebras. In particular,
these simplifications can be used for the superalgebra A(1, 1) (or, in other definition, sl(2, 2)),
which corresponds to the Hubbard model [10–14].

6. Self-consistent-field approximation and introduction of the matrix of effective
Green functions and interactions

6.1. Self-consistent field

The self-consistent-field approximation is equivalent to a rearrangement of the terms in the
Hamiltonian H0 in relation (2). The terms with the interaction Vij are added to the fields bj (�1)

Hb → H(s)
b =

∑
�1,j

bj (�1)σj (�1) +
∑
�1,�1′
i,j

Vij (�1 − �1′)〈〈σi(�1)〉〉0σj (�1′) =
∑
�1,j

Bj (�1)σj (�1), (38)

where Bj(�1) = bj (�1)+
∑

i,�1′ Vij (�1′ − �1)〈〈σi(�1′)〉〉0. In the framework of the diagram technique
given by relations (27) and (30), the rearrangement in the Hamiltonian H0 corresponds
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to the summation of all diagrams that can be divided into two parts through breaking an
interaction line. One of the parts does not have external vertices (so-called one-tail part of
the diagrams). Since in the self-consistent-field approximation the quantum system is in the
thermodynamic equilibrium, then the set of observable variables consists of r commuting
operators σj (�1) with 〈〈σj (�1)〉〉0 �= 0. In the common case, the set of commuting operators
gives new Cartan’s subalgebra, which is conjugated to the previous Cartan’s subalgebra, where
the self-consistent-field approximation is not taken into account. After transformation to new
Cartan’s subalgebra the diagram expansion is given by relations (27) and (30), where the
substitution bj (�1) → Bj(�1) is performed.

6.2. Matrix of effective Green functions and interactions: quasi-particle excitations

In order to describe quasi-particle excitations, we introduce the matrix of effective Green
functions and interactions (the P-matrix) in the frequency representation,

P = ‖PJN(�1, �1′, ωm)‖ [32]. We compose the P-matrix from analytical expressions of
connected diagrams with two external sites. These sites are end points of propagators, single
vertices e, or end points of interaction lines. Accordingly, multi-indices J = (wj),N = (wn)

are the double indices, where j, n correspond to indices of fields pj , pn in derivatives of
the functional Z of the second order in relation (11) or indices of interaction lines. The
index w points out that J,N belong to a propagator or to a e-vertex (w = 1), or belong
to an interaction line (w = 2). The zero-order approximation P(0) of the P-matrix is
determined by the matrix of the bare interaction I(0) = ∥∥I (0)

jn (�1 − �1′, ωm)
∥∥, given by relation

(29), and by the bare two-site Green functions in the self-consistent-field approximation
G(0) = ∥∥G(0)

jn (�1, �1′, ωm)
∥∥ = ‖δ2W/δpjδpn‖ (figure 3(a)), given on a crystal lattice site

P(0) =
(∥∥P (0)

(1j)(1n)

∥∥ ∥∥P (0)

(1j)(2n)

∥∥∥∥P (0)

(2j)(1n)

∥∥ ∥∥P (0)

(2j)(2n)

∥∥
)

=
(∥∥G(0)

jn

∥∥ 0

0
∥∥I (0)

jn

∥∥
)

. (39)

If the indices j, n correspond to non-Cartan’s fields, then in accordance with relations (28)
and (30), the bare Green functions are expressed in terms of b-vertex factors, propagators and
block factors:

G
(0)
jn (�1, �1′, ωm) =

∑
k

vb(n; k|j)Dn(�1, ωm)�
(H)
k (�1)δ�1�1′ , (40)

where the propagator Dn(�1, ωm) is given by relation (28) with fn(�1) = ∑r
l=1 αn

(
σ

(H)
l

)
Bl(�1).

For indices j, n of the Cartan type, the bare Green functions are determined by block factors
(23): G

(0)
jn (�1, �1′, ωm) = �

(H)
jn (�1)δ�1�1′δm0. If one of the indices j, n belongs to the Cartan type

and another index is of the non-Cartan type, then the Green functions G
(0)
jn are equal to zero.

The next approximation of the P-matrix, P(1), is obtained by means of the summation of
the P(0)-matrix (39)—the summation of all diagram chains consisting of bare Green functions
G

(0)
jn and the bare interaction lines I

(0)
jn (figures 3(b)–(d)). These chains of propagators and

interaction lines do not have any loop insertion. Analytical expressions of the considered
diagrams can be written in accordance with relation (30). The summation gives an equation
of the Dyson type

P(1) = ∥∥P (0)
JN (�1, �1′, ωm)

∥∥ +
∑
�2,K,L

∥∥P (1)
JK(�1, �2, ωm)

∥∥ · ‖�KL‖ · ∥∥P (0)
LN(�2, �1′, ωm)

∥∥
= P(0) + P(1)�P(0), (41)
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G
jn

(0)
=

j n

(1 )(1 )j n jn j n = + +

+ +

+

P = =(2 )(2 )j n jn
I

j n = j n +
f j n

P =(1 )(2 )j n =j n nj

P =(2 )(1 )j n j =n j

(1) (1)

j n
j

n

j

n

j n

j

n

j nf f

= +
j nf f

(1) (1)

(1)

(1)

n

f

(a)

(b)

(c)

(d )

Figure 3. (a) Definition of bare two-site Green functions G
(0)
jn . (b) Definition of effective Green

functions P
(1)
(1j)(1n) = G

(1)
jn via the bare Green functions G

(0)
jn . (c) Definition of effective interaction

lines P
(1)
(2j)(2n) = I

(1)
jn . (d) Definition of intersecting terms P

(1)
(1j)(2n), P

(1)
(2j)(1n). Summation over

γ and f denotes the summation over indices of propagators, interaction lines and vertices, space
variables and indices of f -vertices, respectively.

where

� =
(

0 E
E 0

)
, E = ‖δjn‖ is the diagonal matrix.

Taking into account E − G(0)I(0) = G(0)(E − I(0)G(0))G(0)−1, we find that the solution of
equation (41) is the matrix

P(1) = P(0)(1 − �P(0))−1 =
(

G(0)(E − I(0)G(0))−1 (E − G(0)I(0))−1G(0)I(0)

I(0)G(0)(E − I(0)G(0))−1 I(0)(E − G(0)I(0))−1

)
. (42)

The P(1)-matrix consists of effective Green functions G(1) = ∥∥G(1)
jn

∥∥ = ∥∥P (1)

(1j)(1n)

∥∥ =
G(0)(E −I(0)G(0))−1, effective interactions I(1) = ∥∥I (1)

jn

∥∥ = ∥∥P (1)

(2j)(2n)

∥∥ = I(0)(E −G(0)I(0))−1
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and intersecting terms P
(1)

(1j)(2n), P
(1)

(2j)(1n). Effective Green functions, effective interactions
and intersecting terms are denoted in diagrams by directed thick lines, empty lines and
compositions of the thick line–empty line, respectively. Approximations of the P-matrix of
higher orders, s, are determined by summation of diagrams consisting of s loops.

Introduction of the P-matrix leads to the desire to use it in diagram expansions with
effective Green functions and interactions. Substitution of effective Green functions and
interactions for the bare ones can be completely performed only for models with the Heisenberg
algebra (superalgebra). As a result of the substitution, we obtain Feynman’s diagrams with
effective propagators and interaction lines. For models with arbitrary Lie algebras L the
complete substitution is not held. This obstruction is caused by transformation of block
structures of diagrams. The block transformation results in compensating diagrams, in which
partial substitutions of effective Green functions and interaction lines for the bare ones have
been performed.

Spectrum relations of quasi-particle excitations are given by the P-matrix poles—by
zero eigenvalues of the operator 1 − �P(0) or, equivalently, by E − I(0)G(0) under the
analytical continuation (31). Since, zero eigenvalues of these operators can be corresponded
to different eigenfunctions and can determine different excitation modes, we introduce the
spectral parameter λ for eigenfunctions p

(λ)
j (�1, ωm). The spectral parameter λ can be discrete

or continuous. Taking into account the above-mentioned, we get the equation describing
quasi-particle excitations

p
(λ)
j (�1, ωm) −

∑
�1′,k,i

I
(0)
jk (�1 − �1′, ωm)G

(0)
ki (�1′, �1′, ωm)p

(λ)
i (�1′, ωm)

∣∣∣∣∣∣
iωm→ω+iε signω

= 0. (43)

7. Spin system model with an uniaxial anisotropy

As the case of application of the developed diagram technique, we consider a model of a spin
ensemble with an uniaxial anisotropy.

H0 = −gµB

∑
�1

[Sz(�1)Hz(�1) + (Sz)2(�1)Ha(�1)]

− 1

2

∑
�1,�1′

J (�1 − �1′)[Sz(�1)Sz(�1′) + S−(�1)S+(�1′)], (44)

where Hz(�1) is the external magnetic field and Ha(�1) is the anisotropy field. We assume that
the absolute value of spins is 1, |S| = 1. g and µB are the Lande factor and the Bohr magneton,
respectively.

Let us perform transformation from the Lie algebra L(0) = {S+, S−, Sz} to the Lie algebra
L(1) generated by the composite operators SµSν . This transformation allows us to take into
account the anisotropy in the zero-order approximation. The algebra L(1) is isomorphic to the
algebra gl(3) of 3 × 3 matrices and describes the quadrupole spin dynamics [33, 34]. The
operator (Sz)2 is contained in the algebra L(1) and the algebra L(0) is the subalgebra of L(1):
L(0) ⊂ L(1). Matrices

Eij = i

j


0
... 0

· · · 1 · · ·
0

... 0
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form the basis of the algebra gl(3). Spin operators, by whose the Hamiltonian H0 (44) is
written, are expressed via the matrices Eij

Sz = E11 − E33,

Sz2 = E11 + E33,

S+ = E12 + E23,

S− = E21 + E32.

The algebra L(1) = gl(3) can be decomposed with the direct sum L(1) = Span{I }⊕ sl(3),
where sl(3) is the semi-simple Lie algebra isomorphic to the algebra of matrices with zero
traces and I is the identical operator. The Cartan subalgebra H of the algebra gl(3) can be
chosen as the subalgebra spanned on diagonal operators h(1) = ∥∥h(1)

ij

∥∥ = E11 − E33, h
(2) =∥∥h(2)

ij

∥∥ = E11 − E22 and h(3) = ∥∥h(3)
ij

∥∥ = E11 + E22 + E33. The operator (Sz)2 is expressed
via operators h(k), (Sz)2 = −h(1)/3 + 2h(2)/3 + 2h(3)/3. Roots αij of the Lie algebra gl(3) are
linear forms satisfying the condition αij (h

(k)) = h
(k)
ii − h

(k)
jj . The root space corresponding to

the form αij is the one-dimensional space Eαij
= cEij (c ∈ C). In order to define propagators

(28), we choose roots α12, α32, α13. Then, in the frequency representation, three roots αjk

determine three propagators

D(jk)(�1, ωn) = 1

iωn − fjk(�1)
, (45)

where ωn = 2πn; fjk(�1) =∑3
l=1 αjk(h

(l))bl(�1); (jk) is the double index equal 12, 32 and 13;
b1(�1) = −gµB[Hz(�1) − Ha(�1)]/3, b2(�1) = −2gµBHa(�1)/3, b3(�1) = −2gµBHa(�1)/3 are
external fields in the Hamiltonian (2) corresponding to the operators h(1), h(2), h(3) of Cartan’s
subalgebra, respectively. Taking into account the explicit form of the fields bl(�1) and the scale
transformation −βbl → bl performed in section 2, we can write the energies fjk(�1) in relation
(45) as

f12(�1) = βgµB [Hz(�1) + Ha(�1)],

f32(�1) = βgµB [−Hz(�1) + Ha(�1)], (46)

f13(�1) = 2βgµBHz(�1).

The functional W [p(H)] (22) can be written in the form

W [p(H)] =
∑

�1
ln[exp(u1(�1) + u2(�1) + u3(�1))

+ exp(−u2(�1) + u3(�1)) + exp(−u1(�1) + u3(�1))], (47)

where uj (�1) = −β
[
bj (�1) + p

(H)
j (�1)

]
, p

(H)
j (�1) are infinitesimal auxiliary fields. In the self-

consistent-field approximation (38), the magnetic field Hz(�1) is rearranged

H(s)
z (�1) = Hz(�1) +

∑
�1′

J (�1 − �1′)〈〈Sz(�1′)〉〉0.

The transformation Hz(�1) → H(s)
z (�1) results in changes in the external field b1(�1) and in the

energies fjk(�1) in relation (46). In the self-consistent-field approximation, the nonzero bare
Green functions (40) with indices (jk) corresponding to nondiagonal operators Ejk have the
form
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J

J
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1

Figure 4. Spin memory cells with spin anisotropy. J is the interaction between cells.

G
(0)

(12)(21)(
�1, ωn) = −1

β[iωn − f12(�1)]
· ∂W

∂b2(�1)
,

G
(0)

(32)(23)(
�1, ωn) = −1

β[iωn − f32(�1)]
·
[

∂W

∂b1(�1)
− ∂W

∂b2(�1)

]
, (48)

G
(0)

(13)(31)(
�1, ωn) = −1

β[iωn − f13(�1)]
· ∂W

∂b1(�1)
.

The bare Green functions with indices corresponding to diagonal operators h(k)(k =
1, 2, 3) are functions G

(0)

(ii)(jj)(
�1, ωn) = [δ2W/δbi(�1)δbj (�1)] · δn0. For indices i, j = 1, 2,

Green’s functions G
(0)

(ii)(jj) differ from zero. If one of the indices i or j is equal to 3, then

G
(0)

(ii)(jj) = 0. Bare Green’s functions G
(0)

(ij)(kn) and the bare interaction J (�1 − �1′) determine
the matrix of effective Green’s functions and interactions P(1) (42). Dispersion relations
of quasi-particle excitations (43) are given by the P(1)-matrix poles. Taking into account
relations (46)–(48), we can conclude that the given spin model possesses three modes of
spin waves corresponding to transitions between energy levels of non-equidistant spectrum.
Transitions between levels are induced by nondiagonal operators Eij . The non-equidistance
of the spectrum is due to the anisotropy field Ha . Initial points of spin wave dispersion curves
are determined by differences of energies of non-equidistant spectrum levels and correspond
to energies f12, f32, f13.

The spin model (44) is important for applications as the model describing spin memory
cells (figure 4). For Ha > Hz, two states with energy minima exist in a cell, |1〉 with Sz = 1
and |−1〉 with Sz = −1. Due to high values of the field Ha , transitions between these states,
|1〉 → |0〉 → |−1〉 and |−1〉 → |0〉 → |1〉, are realized by jumping over the state |0〉 (Sz = 0)

with the energy maximum. This makes possible to write one bit of information. Transitions
can be induced by pulses of alternating current flowing in vertical and horizontal transfer
buses. Pulse duration must be sufficient to change the magnetization of the cell, where buses
are crossed, and is insufficient to remagnetize other cells. Reading can be performed by means
of alternating current of lesser frequency corresponding to the difference of energies of states
|1〉 and |−1〉 and proportional to the energy f13 = 2Hz. Mutual influence of information
bits written in neighboring cells is determined by spin wave excitation given by equation (43).
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8. Conclusion

The results of the investigations performed can be summarized as follows.

(1) We construct diagram expansions for models with internal Lie-group dynamics. Internal
Lie groups are related to finite-dimensional Lie algebras and Lie superalgebras. The
diagram technique is based on the expansion of the generating functional for the
temperature Green functions, which is determined by differential functional equations.
Solutions of the differential functional equations are found in the form of series. This
method of the construction of the diagram expansion is more general than the methods
based on the Wick theorem and on the expansion of functional integrals. The advantage
of the developing diagram technique is the opportunity to construct effective cluster
approximations for models with strong local interactions. It can be realizable by
substitution of composite operators for single-particle operators in the Hamiltonian
describing a model. This operator substitution leads to the substitution of Lie algebras.
The original Lie algebra L(0) describing the internal dynamics of the quantum system is
replaced by the Lie algebra L(1), which includes L(0) as the subalgebra: L(0) ⊂ L(1). The
example of this substitution is the change of Fermi creation–annihilation operators by
Hubbard operators in the Hubbard model with the strong Coulomb interaction on crystal
lattice sites.

(2) The differential representation makes us possible to generalize functional equations
and the diagram technique for the case of quantum systems on topologically nontrivial
manifolds by the substitution of the generating functional on a sheaf of function rings
on a nontrivial manifold for the generating functional of a constant sheaf of functions.
Nontrivial cohomologies of the manifold, on which the quantum system is acted, lead to
the existence of additional excitations.

(3) The simplification of the diagram technique occurs for models with semi-simple Lie
algebras and with simple contragredient Lie superalgebras. For the case of the Heisenberg
algebra (superalgebra), the diagram expansion reduces to Feynman’s diagrams for Bose
(Fermi) quantum systems.

(4) In order to find quasi-particle excitations, we introduce the P-matrix—the matrix of
effective Green functions and interactions. The P-matrix is obtained by summation of
series of the bare interaction I(0) and the bare Green functions G(0). Dispersion relations
of quasi-particle excitations are given by the P-matrix poles—by zero eigenvalues of the
operator E − I(0)G(0), where E is the unity operator.

(5) We consider the reduction of the developed diagram technique and excitations for the case
of the spin system with an uniaxial anisotropy. This model is important for applications
as the model describing spin memory cells.
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